Section 5.1: ADDING AND SUBTRACTING POLYNOMIALS

When you are done with your homework you should be able to...

- π Understand the vocabulary used to describe polynomials
- π Add polynomials
- π Subtract polynomials
- π Graph equations defined by polynomials of degree 2

WARM-UP:

Simplify:

$$-6x + 5y - 2x^2 - 2y + x^2$$

DESCRIBING POLYNOMIALS

A	is a	term or the		of two
or more	containing		with	
number	It is customa	ry to write the		in the
order of	powers of t	:he	Т	his is the
	_ form of a	·	We begin th	is chapter
by limiting discussior	to polynomials contai	ning	_ variable. Ea	ıch term of
such a	in	is of the form _		The
of	is _	·		

THE DEGREE OF ax^n

If ______ and ____ is a _____ number, the _____ of ____ is ____ . The _____ of a nonzero constant term is ______. The constant zero has no defined degree.

Example 1: I dentify the terms of the polynomial and the degree of each term.

a.
$$-4x^5 - 13x^3 + 5$$

b.
$$-x^2 + 3x - 7$$

A polynomial is ______ when it contains no _____ symbols and no ______ A simplified polynomial that has exactly ______ term is called a ______ . A simplified polynomial that has ______ terms is called a ______ and a simplified polynomial with ______ terms is called a ______ and a simplified polynomials with ______ or more ______ have no special names. The ______ of a ______ is the _____ of a

Example 2: Find the degree of the polynomial.

a.
$$5x^2 - x^8 + 16x^4$$

ADDING POLYNOMIALS

Recall that _____ are terms containing ____ the same ____ to the ____ powers. ____ are added by _____.

Example 3: Add the polynomials.

a.
$$(8x-5)+(-13x+9)$$

b.
$$(7y^3 + 5y - 1) + (2y^2 - 6y + 3)$$

c.
$$\left(\frac{2}{5}x^4 + \frac{2}{3}x^3 + \frac{5}{8}x^2 + 7\right) + \left(-\frac{4}{5}x^4 + \frac{1}{3}x^3 - \frac{1}{4}x^2 - 7\right)$$

d.

$$7x^2 - 5x - 6$$
$$-9x^2 + 4x + 6$$

SUBTRACTING POLYNOMIALS

We	real numbers by	the	of
the number being _	Subtra	action of polynomials	s also involves
	If the sum of two po	lynomials is	, the
polynomials are	of each	n other.	

Example 4: Find the opposite of the polynomial.

a.
$$x+8$$

b.
$$-12x^3 - x + 1$$

SUBTRACTING POLYNOMIALS

То	two polynomials,	the first polynomial and the
	of the second polynomia	al

Example 5: Subtract the polynomials.

a.
$$(x-2)-(7x+9)$$

b.
$$(3x^2-2x)-(5x^2-6x)$$

c.
$$\left(\frac{3}{8}x^2 - \frac{1}{3}x - \frac{1}{4}\right) - \left(-\frac{1}{8}x^2 + \frac{1}{2}x - \frac{1}{4}\right)$$

d.
$$3x^5 - 5x^3 + 6$$
$$-(7x^5 + 4x^3 - 2)$$

GRAPHING EQUATIONS DEFINED BY POLYNOMIALS

Graphs of equations defined by	of degree have a
quality. We can obta	ain their graphs, shaped like
or bow	ls, using the
method for graphing	g an equation in two variables.

Example 3: Graph the following equations by plotting points.

a.
$$y = x^2 - 1$$

Х	$y = x^2 - 1$	(x,y)	
			•

b.
$$y = 9 - x^2$$

х	$y = 9 - x^2$	(x, y)

